Binghamton CS-220

University Spring 2016

C Debugging Basics

No relevant text

Binghamton
University

CS-220

First Computer Bug

) Electrical
Mowveable Fixed Contacts Connections
Contact f:‘
| f =1 Mormally open
v /
Pivat I [i — Common
N = 4
L
Armature

= Mormally closed

T

_r\ F o
Magnetic —
Flux —

Energ'_zing
YCIHE/ Coil
= o o S L
Air Gap Coil Supply Voltage
9/9

PETe) On Aan >w {/.17.0 7.032 syy 05
J /00 . bw -“’I/Iw“ /

> G.087 §¥YC 795 cavuh
13w, (035 MP -pme m/:‘@) Y6/5725055(-9)
23y Pro » 2. 130ya26yis
Cons b 2.030670w5
R -1 =~ 033

; /a-ﬂ,rm/ww : !

o, o

v ehemph
A A -f‘ CO tae T S ne oheck
/ f’ J“i'.-,,, % s ;/-174‘,_(' b)

IJ‘.“ €S

1S4y e Qe\o“*?o Cane| F
“T‘.,:-‘ \Mo'rt\n\ r<\qu\
e e
Flest act | case bk b eing: Lound
rh& /oo Jad\‘-ywl';ks‘ e b 1{
e Jw,l

Binghamton CS-220

University Spring 2016

The “printf” debugger

* Insert printf statements to print debug information
* Build/Run
* Modify to print new information

Advantages Disadvantages

* Simple * Time consuming

* Complete * TMI

* Available anywhere * Side effects change bug

 Forgetting to remove debug

Binghamton CS-220

University Spring 2016

Assert

* Method to check specific “assertions”

* An assertion is any logical expression, evaluated to true or false

* Expression passed as an argument to the “assert” function
e If the expressionis true, “assert” does nothing.

* If the expressionis false, “assert”...

* writes an error message to stderr which contains
e function name, assertion, and line number

* aborts the C program (including a “core dump” if enabled)

* Assertion evaluation can be turned off once program is debugged
* #define NDEBUG

Binghamton CS-220

University Spring 2016

Assertion example

#inclue <assert.h>
#include <stdio.h>

int main() {
Int J;
for(j=0;j!'=100;j++) {
assert(j<100);

j=factorial(j);

Binghamton CS-220

University Spring 2016

GDB — A Source Level Debugger!

* Compiling with “-g” option causes compiler/linker to track:
* C file names
* Cinstructions/line numbers
* Variable names and types
* Function names and line numbers and stack frame layout

* Compiling with —-g required for GDB

* Compiling with -g limits optimization and increases executable
size

Binghamton
University

CS-220
Spring 2016

Command Line Mentality

Start w/ gdb command,
specifying executable
file as argument

gdb prints boilerplate
info

gdb loads the
executable, but does
NOT transfer control

gdb opens a gdb prompt

$ gdb count.exe

GNU gdb (GDB) 7.8

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-pc-cygwin".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

vor help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from count.exe...done.

(gdb)

Binghamton CS-220

University Spring 2016
]]]]
Hint: Open Editor/Cod nd first
Int. Ype ItO oae WINaow TIIrs
& TextPad - C\cygwin64\home\Thomas\cs220\xmp_counting\count.c - B “
File Edit Search View Tools Macros Configure Window Help
NEEHISRE BB DS =220 (0% 4 Ea?Gh e e » _|i|Findincementaly| & i [] Match case _

17 int main(int argv,char **argc) {

19 int n=0; ~/cs220/xmp_counting - B
20 ~/cs220/xmp_counting .
21 if (argv < 2) help(argc[0]);
22 -
23 if (argqv==3) { /cs220/xmp_counting
24 n=atoi(argc[2]);
25 } ~/cs220/xmp_counting
26 $ gdbdgo%nt.gxe
i == nan GNU g GDB) 7.8
g; it g(:larsgtr(i:.mp(argc[ﬂ,) o Copyright (C) 2014 Free Ssoftware Foundation, Inc.
rL.pl; . . License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
29 for(i=n,pi=n; i>=pi; pi=i,i++) { Bl This is free software: you are free to change and redistribute it.
30 U ARG RIS ELIEIRU MR There is NO WARRANTY, to the extent permitted by Taw. Type "show copying"
31 } and "show warranty"” for details.]
32 LA IR RO S MR Tkt ' Nis GDB was configured as "x86_64-pc-cygwin”.
an avit/N)- Type "show configuration" for configuration details.
< For bug reporting instructions, please see:
| <http . //www_ gnu. 0rg/50ftware/gdb/bugs/> .

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from count.exe...done.

(gdb) v

Binghamton CS-220

University Spring 2016

GDB “Context’

 Current source file
 Current instruction: Line number and instruction about to execute

* Call stack: List of function calls, starting at “main” that got you to the
current instruction
* Each entry is a “frame”
* main’s frame is on “top”
* Current “frame” is a pointer into the call stack, typically “bottom” frame
* GDB Variable scope is scope of the current frame

* Breakpoint list: List of files/lines/functions where gdb should interrupt
execution and open command line prompt

Binghamton CS-220

University Spring 2016

Initial GDB prompt

* Executable is loaded, but gdb is still in control

 Current GDB context...
e Current file: C file which contains “main” function
e Currentinstruction: None
* No breakpoints set
* No function stack

* Need a “(gdb) run <cmd_args>" command to transfer execution
* Parses <cmd_args> into arguments to main
* Transfers execution to main
« WARNING: program will run to completion if no breakpoints are set!

Binghamton CS-220

University Spring 2016

GDB Command Line Processing

* (gdb) <enter> - Repeat previous command

* (gdb) <command> <arguments>

* <command> can be the shortest non-ambiguous gdb command prefix
* e.g. “(gdb) n” for “next”
* e.g. “(gdb) where” for “where”

* (gdb) w
Ambiguous command "w": watch, wh, whatis, where, while, while-stepping,
winheight, ws.

* Up/Down arrow to scroll through command history
* Left/Right arrow to edit command
* (gdb) help <cmd>

Binghamton CS-220

University Spring 2016

Managing Breakpoints

* Setting breakpoints: (gdb) b <location> if <condition>

e Location:
o <##> - break before instruction at line number <##> in current file
o <file>:<##> - break before instruction at line number <##> in file <file>
e <function_name> - break before first instruction in <function_name> function
* No location - break before next instruction in current frame of call stack

* Condition:
* Any valid C expression... like “(*stringPtr)!=0x00"

* Listing breakpoints: (gdb) info breakpoints
 Commands at breakpoints: (gdb) commands
 Removing breakpoints: (gdb) clear <location>

Binghamton CS-220

University Spring 2016

Single Stepping Code

* (gdb) s|tep]
* Run next C instruction
* If there is a function call, step into function (includes library functions)
e If functionin a file not compiled w/ -g, stop after function

* Leaky abstractions: implicit returns and macros

* (gdb) n|[ext]
 Run next C instruction

* If there is a function call, execute the function, but do not break inside the
function

* (gdb) c|[ontinue]

* Continue execution to next breakpoint

Binghamton CS-220

University Spring 2016

Dealing w/ Data

* (gdb) p|rint] <expression>
 Uses expression type to format result
» <expression> may be most valid C expressions

* <expression> may contain any variable visible in the current call stack
frame scope

* (gdb) set <variable> = <expression>

Binghamton CS-220

University Spring 2016
1 int fnB(int x, int y); (gdb)b 16
2 int fnC(int x, int y); (gdb) run
3
4 int main(int argc,char **argv) {
5 int i=fnb(3,4);
6 int j=fnb(3,6); Breakpoint 1, fnc (x=3, y=1) at xmp_where.c:16
7 int k=fnb(3,1); 16 return x%y;
8 return O; (gdb)
o) You are here, but
10 int fnb(int x,int y) { hOW dld you get
11 int m=fnc(x,1); 9
12 int n=fnc(1,y); here g

13 return m+n;
14}
15 int fnc(int x, int y) {

16 return x%y;

17} see xmp_where

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_where/

Binghamton CS-220

University Spring 2016
?

Where Are You

1 int fnB(int X, int y); (gdb) b 16

2 int fnC(int x, int y); (gdb) run

3

4 int main(int argc,char **argv) {

5 int i=fnb(3,4);

6 int j=fnb(3,6); Breakpoint 1, fnc (x=3, y=1) at xmp_where.c:16

7 int k=fnb(3,1); 16 return x%y;

8 return O; (gdb) where

91} =3,y=1) at xmp_where.c:16]

10 int fnb(int x,int y) { 00100 in fnb (x=3,y=4) at me_where.c:ll]

11 int m=fnc(x,1); 2 0x0000000100401103 in main (argc=1, argv=0x23cb20) at xmp_where.c:5]
12 int n=fnc(1,y); (gdb)

13 return m+n;

14}

15 int fnc(int x, inty) {
16 return x%y;
17}

Binghamton CS-220

University Spring 2016

Managing the call stack

* (gdb) where

* prints the call stack
* Each frame: [#]<nn> <function> (<args>) at <file>:<line>

* (gdb) up / (gdb) down

* Move the current frame up or down in the stack list

* (gdb) frame

* More gory details about current stack frame

Binghamton CS-220

University Spring 2016
Where Are You"
2 int fnC(int x, int y); (gdb) run
3
4 int main(int argc,char **argv) {
5 int i=fnb(3,4); Breakpoint 1, fnc (x=3, y=1) at xmp_where.c:16
16 return x%y;
6 int j=fnb(3,6); (gdb) where
: _) #0 fnc (x=3,y=1) at xmp_where.c:16
7 k=f 1
int k=fb(3,1); #1 0x0000000100401150 in fnb (x=3, y=4) at xmp_where.c:11
8 return O; #2 0x0000000100401103 in main (argc=1, argv=0x23cb20) at xmp_where.c:5
9} (gdb) printy
$1=1
10 int fnb(int x,inty) { (gdb) up
11 int m=fnc(x,1); #1 0x0000000100401150 in fnb (x=3, y=4) at xmp_where.c:11
_ 11 int m=fnc(x,1);
12 int n=fnc(1,y); db) where
13 return m+n; =3,y= p-where.c:16
#1 0x0000000100401150 in fnb (x=3, y=4) at xmp_where.c:11]
14} #2 0x0000000100401103 in main (argc=1, argv=0x23cb20) at xmp_where.c:5
15 int fnc(int X, int y) { (gdb) printy

16 return x%y; $2=4

17}

